LoRaSensor: Unterschied zwischen den Versionen

Aus Opennet
Wechseln zu: Navigation, Suche
(Software)
(Änderung 32442 von Thm (Diskussion) rückgängig gemacht. Source-Code Formatierung funktioniert nicht.)
Zeile 34: Zeile 34:
 
* C-Code (Arduino-Style) zum Auslesen des Sensors und Versenden des Ergebnisses per LoRaWAN
 
* C-Code (Arduino-Style) zum Auslesen des Sensors und Versenden des Ergebnisses per LoRaWAN
 
* InfluxDB und Grafana [[Datei:mq135messwerte.png|mini|Verlauf der Sensor-Messwerte vom MQ-135]]
 
* InfluxDB und Grafana [[Datei:mq135messwerte.png|mini|Verlauf der Sensor-Messwerte vom MQ-135]]
 
<syntaxhighlight lang="c">
 
 
#include <Arduino.h>
 
 
#include <U8g2lib.h>
 
//https://github.com/olikraus/u8g2
 
 
#include "esp_system.h"
 
 
#include <lmic.h>
 
#include <hal/hal.h>
 
#include <SPI.h>
 
 
#ifdef U8X8_HAVE_HW_I2C
 
#include <Wire.h>
 
#endif
 
 
// LoRaWAN NwkSKey, network session key
 
// This is the default Semtech key, which is used by the prototype TTN
 
// network initially.
 
static const PROGMEM u1_t NWKSKEY[16] = { 0x2B, 0x7E, 0x15, 0x16, 0x28, 0xAE, 0xD2, 0xA6, 0xAB, 0xF7, 0x15, 0x88, 0x09, 0xCF, 0x4F, 0x3C };
 
 
// LoRaWAN AppSKey, application session key
 
// This is the default Semtech key, which is used by the prototype TTN
 
// network initially.
 
static const u1_t PROGMEM APPSKEY[16] = { 0x2B, 0x7E, 0x15, 0x16, 0x28, 0xAE, 0xD2, 0xA6, 0xAB, 0xF7, 0x15, 0x88, 0x09, 0xCF, 0x4F, 0x3C };
 
 
// LoRaWAN end-device address (DevAddr)
 
// See http://thethingsnetwork.org/wiki/AddressSpace
 
static const u4_t DEVADDR = 0x03FF0001 ; // <-- Change this address for every node!
 
 
int sensorPin = 34;    // select the input pin for the potentiometer
 
int ledPin = 25;      // select the pin for the LED
 
int sensorValue = 0;  // variable to store the value coming from the sensor
 
int counter = 0;
 
 
// These callbacks are only used in over-the-air activation, so they are
 
// left empty here (we cannot leave them out completely unless
 
// DISABLE_JOIN is set in config.h, otherwise the linker will complain).
 
void os_getArtEui (u1_t* buf) { }
 
void os_getDevEui (u1_t* buf) { }
 
void os_getDevKey (u1_t* buf) { }
 
 
uint8_t mydata[] = "Empty";
 
static osjob_t sendjob;
 
 
// Schedule TX every this many seconds (might become longer due to duty
 
// cycle limitations).
 
const unsigned TX_INTERVAL = 60;
 
 
// Pin mapping
 
const lmic_pinmap lmic_pins = {
 
    .nss = 6,
 
    .rxtx = LMIC_UNUSED_PIN,
 
    .rst = 5,
 
    .dio = {2, 3, 4},
 
};
 
 
void onEvent (ev_t ev) {
 
    Serial.print(os_getTime());
 
    Serial.print(": ");
 
    switch(ev) {
 
        case EV_SCAN_TIMEOUT:
 
            Serial.println(F("EV_SCAN_TIMEOUT"));
 
            break;
 
        case EV_BEACON_FOUND:
 
            Serial.println(F("EV_BEACON_FOUND"));
 
            break;
 
        case EV_BEACON_MISSED:
 
            Serial.println(F("EV_BEACON_MISSED"));
 
            break;
 
        case EV_BEACON_TRACKED:
 
            Serial.println(F("EV_BEACON_TRACKED"));
 
            break;
 
        case EV_JOINING:
 
            Serial.println(F("EV_JOINING"));
 
            break;
 
        case EV_JOINED:
 
            Serial.println(F("EV_JOINED"));
 
            break;
 
        case EV_RFU1:
 
            Serial.println(F("EV_RFU1"));
 
            break;
 
        case EV_JOIN_FAILED:
 
            Serial.println(F("EV_JOIN_FAILED"));
 
            break;
 
        case EV_REJOIN_FAILED:
 
            Serial.println(F("EV_REJOIN_FAILED"));
 
            break;
 
            break;
 
        case EV_TXCOMPLETE:
 
            Serial.println(F("EV_TXCOMPLETE (includes waiting for RX windows)"));
 
            if(LMIC.dataLen) {
 
                // data received in rx slot after tx
 
                Serial.print(F("Data Received: "));
 
                Serial.write(LMIC.frame+LMIC.dataBeg, LMIC.dataLen);
 
                Serial.println();
 
            }
 
            // Schedule next transmission
 
            os_setTimedCallback(&sendjob, os_getTime()+sec2osticks(TX_INTERVAL), do_send);
 
            break;
 
        case EV_LOST_TSYNC:
 
            Serial.println(F("EV_LOST_TSYNC"));
 
            break;
 
        case EV_RESET:
 
            Serial.println(F("EV_RESET"));
 
            break;
 
        case EV_RXCOMPLETE:
 
            // data received in ping slot
 
            Serial.println(F("EV_RXCOMPLETE"));
 
            break;
 
        case EV_LINK_DEAD:
 
            Serial.println(F("EV_LINK_DEAD"));
 
            break;
 
        case EV_LINK_ALIVE:
 
            Serial.println(F("EV_LINK_ALIVE"));
 
            break;
 
        default:
 
            Serial.println(F("Unknown event"));
 
            break;
 
    }
 
}
 
 
void do_send(osjob_t* j){
 
    // Check if there is not a current TX/RX job running
 
    if (LMIC.opmode & OP_TXRXPEND) {
 
        Serial.println(F("OP_TXRXPEND, not sending"));
 
    } else {
 
        // Prepare upstream data transmission at the next possible time.
 
        LMIC_setTxData2(1, mydata, sizeof(mydata)-1, 0);
 
        Serial.println(F("Packet queued"));
 
    }
 
    // Next TX is scheduled after TX_COMPLETE event.
 
}
 
 
 
/*
 
  U8glib Example Overview:
 
    Frame Buffer Examples: clearBuffer/sendBuffer. Fast, but may not work with all Arduino boards because of RAM consumption
 
    Page Buffer Examples: firstPage/nextPage. Less RAM usage, should work with all Arduino boards.
 
    U8x8 Text Only Example: No RAM usage, direct communication with display controller. No graphics, 8x8 Text only.
 
   
 
*/
 
 
// U8g2 Contructor List (Frame Buffer)
 
// The complete list is available here: https://github.com/olikraus/u8g2/wiki/u8g2setupcpp
 
 
U8G2_SSD1306_128X64_NONAME_F_SW_I2C u8g2(U8G2_R0, /* clock=*/ 15, /* data=*/ 4, /* reset=*/ 16);
 
 
void u8g2_prepare(void) {
 
  u8g2.setFont(u8g2_font_6x10_tf);
 
  //https://github.com/olikraus/u8g2/wiki/fntgrpx11
 
  u8g2.setFontRefHeightExtendedText();
 
  u8g2.setDrawColor(1);
 
  u8g2.setFontPosTop();
 
  u8g2.setFontDirection(0);
 
}
 
 
#define opennetlogobw_width 64
 
#define opennetlogobw_height 64
 
static unsigned char opennetlogobw_bits[] = {
 
  0x00, 0x00, 0x80, 0xff, 0x1f, 0x00, 0x00, 0x00, 0x00, 0x00, 0xf8, 0x07,
 
  0xfc, 0x03, 0x00, 0x00, 0x00, 0x00, 0x0f, 0x00, 0x00, 0x1f, 0x00, 0x00,
 
  0x00, 0xe0, 0x01, 0x00, 0x00, 0x78, 0x00, 0x00, 0x00, 0x38, 0x00, 0x00,
 
  0x00, 0xc0, 0x03, 0x00, 0x00, 0x0e, 0x00, 0x00, 0x00, 0x00, 0x07, 0x00,
 
  0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x1c, 0x00, 0x00, 0x00, 0xc0, 0xff,
 
  0x3f, 0x00, 0x70, 0x00, 0x00, 0x00, 0xf8, 0x00, 0xf0, 0x03, 0xc0, 0x00,
 
  0x00, 0x00, 0x0f, 0x00, 0x00, 0x0f, 0x80, 0x01, 0x00, 0xc0, 0x01, 0x00,
 
  0x00, 0x38, 0x00, 0x03, 0x00, 0x40, 0x00, 0x00, 0x00, 0xe0, 0x00, 0x06,
 
  0x00, 0x00, 0x00, 0x00, 0x00, 0x80, 0x03, 0x1c, 0x00, 0x00, 0x00, 0xfc,
 
  0x03, 0x00, 0x06, 0x38, 0x00, 0x00, 0xc0, 0xff, 0x7f, 0x00, 0x1c, 0x30,
 
  0x00, 0x00, 0x78, 0x00, 0xe0, 0x01, 0x38, 0x60, 0x00, 0x00, 0x0e, 0x00,
 
  0x00, 0x07, 0x60, 0xc0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x1c, 0xc0, 0x00,
 
  0x00, 0x00, 0x00, 0x00, 0x00, 0x30, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
 
  0x00, 0xe0, 0x80, 0x01, 0x00, 0x00, 0x00, 0xfe, 0x07, 0x80, 0x01, 0x01,
 
  0x00, 0x00, 0xc0, 0x07, 0x3c, 0x00, 0x03, 0x00, 0x00, 0x00, 0x60, 0x00,
 
  0xe0, 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, 0x01, 0x06, 0x00,
 
  0x00, 0x00, 0x00, 0x00, 0x00, 0x07, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 
  0x00, 0x0c, 0x00, 0x00, 0x00, 0x00, 0x00, 0xe0, 0x00, 0x18, 0x00, 0x00,
 
  0x00, 0x00, 0x00, 0xfe, 0x07, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x06,
 
  0x1c, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x38, 0x00, 0x00, 0x00,
 
  0x00, 0x00, 0x00, 0x00, 0x60, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 
  0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x78, 0x00, 0x00, 0x00, 0x00, 0x00,
 
  0x00, 0x00, 0xfe, 0x01, 0x80, 0x1f, 0x00, 0x00, 0x00, 0x00, 0xff, 0x03,
 
  0xc0, 0x3f, 0x00, 0x00, 0x00, 0x00, 0xff, 0x07, 0xe0, 0x7f, 0x00, 0x00,
 
  0x00, 0x00, 0xff, 0x07, 0xe0, 0x7f, 0x00, 0x00, 0x00, 0x02, 0xff, 0x07,
 
  0xe0, 0xff, 0x00, 0x00, 0x00, 0x04, 0xfe, 0x03, 0xe0, 0x7f, 0x00, 0x00,
 
  0x00, 0x0c, 0xfc, 0x03, 0xe0, 0x7f, 0x00, 0x00, 0x00, 0x38, 0xf0, 0x00,
 
  0xc0, 0x3f, 0x80, 0x00, 0x00, 0x78, 0x00, 0x00, 0x00, 0x06, 0xc0, 0x00,
 
  0x00, 0xf0, 0x01, 0x00, 0x01, 0x00, 0x60, 0x00, 0x00, 0xf0, 0x07, 0x10,
 
  0x1e, 0x00, 0x78, 0x00, 0x00, 0xe0, 0x3f, 0x0f, 0xf8, 0x07, 0x7e, 0x00,
 
  0x00, 0xe0, 0xff, 0x07, 0xf0, 0xff, 0x7f, 0x00, 0x00, 0xe0, 0xff, 0x07,
 
  0xc0, 0xff, 0x7f, 0x00, 0x00, 0xe0, 0xff, 0x03, 0x80, 0xff, 0x3f, 0x00,
 
  0x00, 0xe0, 0xff, 0x01, 0x00, 0xff, 0x3f, 0x00, 0x00, 0xf0, 0xff, 0x01,
 
  0x00, 0xfe, 0x3f, 0x00, 0x00, 0xf8, 0xff, 0x00, 0x00, 0xfe, 0x3f, 0x00,
 
  0x00, 0xfe, 0xff, 0x00, 0x00, 0xfc, 0x7f, 0x00, 0x80, 0xff, 0xff, 0x00,
 
  0x00, 0xfc, 0x7f, 0x00, 0xe0, 0x03, 0xff, 0x00, 0x00, 0xfe, 0xff, 0x00,
 
  0x04, 0x00, 0xf8, 0x00, 0x00, 0xfe, 0xff, 0x00, 0x00, 0x00, 0xf0, 0x00,
 
  0x00, 0xff, 0xff, 0x01, 0x00, 0x00, 0xe0, 0x00, 0x00, 0x3f, 0xe0, 0x01,
 
  0x00, 0x00, 0xc0, 0x00, 0x80, 0x0f, 0x80, 0x03, 0x00, 0x00, 0x80, 0x00,
 
  0xc0, 0x03, 0x00, 0x06, 0x00, 0x00, 0x80, 0x00, 0xe0, 0x00, 0x00, 0x08,
 
  0x00, 0x00, 0x00, 0x01, 0x30, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x00,
 
  0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00,
 
  0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00  };
 
 
 
void u8g2_bitmap_modes(uint8_t transparent) {
 
  const uint8_t frame_size = 24;
 
 
  u8g2.setDrawColor(1);// Black
 
  u8g2.drawXBMP(0, 0, opennetlogobw_width, opennetlogobw_height, opennetlogobw_bits);
 
}
 
 
void draw(void) {
 
  u8g2_prepare();
 
  u8g2_bitmap_modes(0);
 
}
 
 
 
void setup(void) {
 
  u8g2.begin();
 
  pinMode(ledPin, OUTPUT);
 
  pinMode(sensorPin, INPUT);
 
  Serial.begin(115200);
 
  Serial.println("Programm gestartet!");
 
 
 
 
    #ifdef VCC_ENABLE
 
    // For Pinoccio Scout boards
 
    pinMode(VCC_ENABLE, OUTPUT);
 
    digitalWrite(VCC_ENABLE, HIGH);
 
    delay(1000);
 
    #endif
 
 
    // LMIC init
 
    os_init();
 
    // Reset the MAC state. Session and pending data transfers will be discarded.
 
    LMIC_reset();
 
 
    // Set static session parameters. Instead of dynamically establishing a session
 
    // by joining the network, precomputed session parameters are be provided.
 
    #ifdef PROGMEM
 
    // On AVR, these values are stored in flash and only copied to RAM
 
    // once. Copy them to a temporary buffer here, LMIC_setSession will
 
    // copy them into a buffer of its own again.
 
    uint8_t appskey[sizeof(APPSKEY)];
 
    uint8_t nwkskey[sizeof(NWKSKEY)];
 
    memcpy_P(appskey, APPSKEY, sizeof(APPSKEY));
 
    memcpy_P(nwkskey, NWKSKEY, sizeof(NWKSKEY));
 
    LMIC_setSession (0x1, DEVADDR, nwkskey, appskey);
 
    #else
 
    // If not running an AVR with PROGMEM, just use the arrays directly
 
    LMIC_setSession (0x1, DEVADDR, NWKSKEY, APPSKEY);
 
    #endif
 
 
    // Set up the channels used by the Things Network, which corresponds
 
    // to the defaults of most gateways. Without this, only three base
 
    // channels from the LoRaWAN specification are used, which certainly
 
    // works, so it is good for debugging, but can overload those
 
    // frequencies, so be sure to configure the full frequency range of
 
    // your network here (unless your network autoconfigures them).
 
    // Setting up channels should happen after LMIC_setSession, as that
 
    // configures the minimal channel set.
 
    LMIC_setupChannel(0, 868100000, DR_RANGE_MAP(DR_SF12, DR_SF7),  BAND_CENTI);      // g-band
 
    LMIC_setupChannel(1, 868300000, DR_RANGE_MAP(DR_SF12, DR_SF7B), BAND_CENTI);      // g-band
 
    LMIC_setupChannel(2, 868500000, DR_RANGE_MAP(DR_SF12, DR_SF7),  BAND_CENTI);      // g-band
 
    LMIC_setupChannel(3, 867100000, DR_RANGE_MAP(DR_SF12, DR_SF7),  BAND_CENTI);      // g-band
 
    LMIC_setupChannel(4, 867300000, DR_RANGE_MAP(DR_SF12, DR_SF7),  BAND_CENTI);      // g-band
 
    LMIC_setupChannel(5, 867500000, DR_RANGE_MAP(DR_SF12, DR_SF7),  BAND_CENTI);      // g-band
 
    LMIC_setupChannel(6, 867700000, DR_RANGE_MAP(DR_SF12, DR_SF7),  BAND_CENTI);      // g-band
 
    LMIC_setupChannel(7, 867900000, DR_RANGE_MAP(DR_SF12, DR_SF7),  BAND_CENTI);      // g-band
 
    LMIC_setupChannel(8, 868800000, DR_RANGE_MAP(DR_FSK,  DR_FSK),  BAND_MILLI);      // g2-band
 
    // TTN defines an additional channel at 869.525Mhz using SF9 for class B
 
    // devices' ping slots. LMIC does not have an easy way to define set this
 
    // frequency and support for class B is spotty and untested, so this
 
    // frequency is not configured here.
 
 
    // Disable link check validation
 
    LMIC_setLinkCheckMode(0);
 
 
    // Set data rate and transmit power (note: txpow seems to be ignored by the library)
 
    LMIC_setDrTxpow(DR_SF7,14);
 
 
    // Start job
 
    do_send(&sendjob);
 
}
 
 
void loop(void) {
 
  digitalWrite(ledPin, LOW);
 
  u8g2.clearBuffer();
 
  draw();
 
  sensorValue = analogRead(sensorPin);
 
  u8g2.setFont(u8g2_font_6x10_tf);
 
  char c[64];
 
  String str;
 
  str = String(sensorValue);
 
  Serial.println(str);
 
  str.getBytes(mydata, 64);
 
  // mydata will be sent in do_send() which is also called in case we receive a EV_TXCOMPLETE event
 
  str.toCharArray(c, 64);
 
  u8g2.drawStr(75,0, "Sensor");
 
  u8g2.drawStr(75,10, "readout:");
 
  u8g2.drawStr(75,20, c);
 
  u8g2.drawStr(75,34, "LoRaWAN");
 
  u8g2.drawStr(75,44, "message");
 
  str = String(counter);
 
  Serial.println(str);
 
  str.toCharArray(c, 64);
 
  u8g2.drawStr(75,54, c);
 
  counter++;
 
  u8g2.sendBuffer();
 
  delay(2500);
 
  digitalWrite(ledPin, HIGH);
 
  delay(2500);
 
}
 
</syntaxhighlight>
 

Version vom 2. April 2018, 22:30 Uhr

Inhaltsverzeichnis

Anleitung für einen schnell zusammengebauten Sensor-Knoten mit LoRa-Interface

Hardware-Stückliste

Entwicklungsumgebung einrichten

Software

  • Hier fehlt noch viel - die Messwerte auf dem Bild stammen von einem MQ-135 an einem Raspberry PI
  • C-Code (Arduino-Style) zum Auslesen des Sensors und Versenden des Ergebnisses per LoRaWAN
  • InfluxDB und Grafana
    Verlauf der Sensor-Messwerte vom MQ-135
Meine Werkzeuge
Namensräume

Varianten
Aktionen
Start
Opennet
Kommunikation
Karten
Werkzeuge